964 research outputs found

    Stable p-wave resonant two-dimensional Fermi-Bose dimers

    Full text link
    We consider two-dimensional weakly-bound heterospecies molecules formed in a Fermi-Bose mixture with attractive Fermi-Bose and repulsive Bose-Bose interactions. Bosonic exchanges lead to an intermolecular attraction, which can be controlled and tuned to a p-wave resonance. Such attractive fermionic molecules can be realized in quasi-two-dimensional ultracold isotopic or heteronuclear mixtures. We show that they are stable with respect to the recombination to deeply-bound molecular states and with respect to the formation of higher-order clusters (trimers, tetramers, etc.

    Dimensional crossover for the beyond-mean-field correction in Bose gases

    Full text link
    We present a detailed beyond-mean-field analysis of a weakly interacting Bose gas in the crossover from three to low dimensions. We find an analytical solution for the energy and provide a clear qualitative picture of the crossover in the case of a box potential with periodic boundary conditions. We show that the leading contribution of the confinement-induced resonance is of beyond-mean-field order and calculate the leading corrections in the three- and low-dimensional limits. We also characterize the crossover for harmonic potentials in a model system with particularly chosen short- and long-range interactions and show the limitations of the local-density approximation. Our analysis is applicable to Bose-Bose mixtures and gives a starting point for developing the beyond-mean-field theory in inhomogeneous systems with long-range interactions such as dipolar particles or Rydberg-dressed atoms.Comment: 5 pages and supplemental material, revised treatment of the harmonic confinemen

    Observation of a Strong Atom-Dimer Attraction in a Mass-Imbalanced Fermi-Fermi Mixture

    Full text link
    We investigate a mixture of ultracold fermionic 40^{40}K atoms and weakly bound 6^{6}Li40^{40}K dimers on the repulsive side of a heteronuclear atomic Feshbach resonance. By radio-frequency spectroscopy we demonstrate that the normally repulsive atom-dimer interaction is turned into a strong attraction. The phenomenon can be understood as a three-body effect in which two heavy 40^{40}K fermions exchange the light 6^{6}Li atom, leading to attraction in odd partial-wave channels (mainly p-wave). Our observations show that mass imbalance in a fermionic system can profoundly change the character of interactions as compared to the well-established mass-balanced case

    Anisotropic expansion of a thermal dipolar Bose gas

    Full text link
    We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the post-expansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases, reducing error in expansion thermometry from tens of percent to only a few percent. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.Comment: main text and supplement, 11 pages total, 4 figure

    Synthesis, molecular structures and EPR spectra of the paramagnetic cuboidal clusters with Mo3S4Ga cores

    Get PDF
    Electron precise [Mo3(l3-S)(l-S)3(diphos)3Br3]Br (diphos = dppe, dmpe) incomplete cuboidal clusters with six cluster skeletal electrons (CSE) were converted into paramagnetic cuboidal [Mo3(GaBr)(l3-S)4- (diphos)3Br3] clusters by treatment with elemental Ga. The new heterobimetallic complexes with nine CSE possess a doublet ground state with the unpaired electron density delocalized over the three molybdenum atoms

    Noise diodes as a source of entropy for hardware random number generators

    Get PDF
    The purpose of this article is to describe the use of digital noise generators based on semiconductor noise diodes as part of systems for generating key numerical sequences used in cryptographic security methods. The classification of modern methods of cryptographic protection and the algorithms underlying them are considered. It is shown that ensuring high information entropy in systems for generating encryption keys is possible by using generators of truly random number sequences and cryptographically secure generators of pseudo-random number sequences. A number of disadvantages inherent in widely used sources of physical noise are described, namely: low spectral density of broadband noise, limited frequency range, nonlinearity of the noise spectrum, difficulties in technical implementation when using some methods, especially under conditions of extreme temperatures and exposure to special factors. It has been confirmed that the noise properties of semiconductor noise diodes depend on the composition and constancy of the defect-impurity structure, and defect engineering makes it possible to control their electrical parameters. The study of inhomogeneities and defects in noise diodes and the development on this basis of methods for controlling the level of structural defects made it possible to create technologies for their generation and annealing, and to improve a number of electrical and statistical properties of noise diodes
    • …
    corecore